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We study a renormalization transformation arising in an infinite system of inter-
acting diffusions. The components of the system are labeled by the N-dimen-
sional hierarchical lattice (N^2) and take values in the closure of a compact
convex set D c Rd ( d ^ 1 ) . Each component starts at some OeD and is subject
to two motions: (1) an isotropic diffusion according to a local diffusion rate
g: D-* [0, oo) chosen from an appropriate class; (2) a linear drift toward an
average of the surrounding components weighted according to their hierarchical
distance. In the local mean-field limit N-»oo, block averages of diffusions
within a hierarchical distance k, on an appropriate time scale, are expected to
perform a diffusion with local diffusion rate F(K)g, where F(k)g = (FC ° ••• ° F C ) g
is the k th iterate of renormalization transformations Fc(c>0) applied to g. Here
the ck measure the strength of the interaction at hierarchical distance k. We
identify Fc and study its orbit (Fwg)k>0. We show that there exists a "fixed
shape" g* such that limyt_00 okF

(k)g = g* for all g, where the ak are normaliz-
ing constants. In terms of the infinite system, this property means that there is
complete universal behavior on large space-time scales. Our results extend earlier
work for d=1 and D = [0, 1], resp. [0, oo). The renormalization transforma-
tion Fc is defined in terms of the ergodic measure of a d-dimensional diffusion.
In d = 1 this diffusion allows a Yamada-Watanabe-type coupling, its ergodic
measure is reversible, and the renormalization transformation Fc is given by an
explicit formula. All this breaks down in a"^2, which complicates the analysis
considerably and forces us to new methods. Part of our results depend on a
certain martingale problem being well-posed.
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0. INTRODUCTION

In this paper we study a renormalization transformation that arises in the
study of a system of hierarchically interacting diffusions. Our study is part
of a larger area where the goal is to understand universal behavior on large
space-time scales of stochastic systems with interacting components. In a
recent series of papers,(l,5-7) it was shown how renormalization techniques
can be used to give a rigorous analysis of a model, described below,
consisting of interacting diffusions indexed by the hierarchical lattice and
taking values in the state space [0, 1 ]. In the meantime the analysis has
been generalized to the state space [0, oo).(2,8)

So far, the model has only been treated completely in the case of a
one-dimensional state space (although some limited results for the infinite-
dimensional state space of probability measures on [0, 1] can be found in
refs. 9 and 10). The present paper investigates a class of isotropic models
with state space D, where D c Rd (d^ 1) is open, bounded and convex. To
help the reader, we use the remainder of this section to present an overview
of the known results for the case d=1, together with a heuristic view on
what is behind these results. This overview provides the essential motiva-
tion for Section 1, where we state our new results for the case d^-2 and
formulate some open problems. Proofs appear in Sections 2-4.

0.1. Genetic Diffusions

Our model finds its origin in population dynamics. Consider a gene
that conies in d+ 1 types ("alleles"). Consider a population consisting of n
individuals, each carrying one copy of the gene ("haploid organisms"). At
any time the population may be described by a point x in the discrete
simplex

We interpret xlt..., xd, 1 — £d=1 xt as the proportions of alleles 1,..., d+ 1.
Frequencies of alleles are supposed to change due to "random sampling"
and "migration."

Random sampling is a random process by which some alleles may
occasionally produce more offspring than others. We can model it as a
Markov evolution on Kn

d by replacing pairs of individuals after an
exponential waiting time with mean 1. A pair is replaced in the following
manner: we choose one individual of the pair at random, determine its
allele and replace both individuals by individuals with this allele.
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Migration is a random process that we can model by introducing a
huge reservoir of individuals, with gene frequencies 0{,..., 0d, 1 — £d=1 0,-,
and letting each individual in the population be replaced with rate c by an
individual of the reservoir.

The generator A of the resulting process (migration and random
sampling) is given by

where x = (x,,..., xd) and e i=(e i , . . . , e i
d) with ei = <5,y for i= 1,..., d. In (2) we

have additionally defined xd+ l = l-£d= 1 x, and 9d+l = 1-£d
=1 #,-, and

put ed+l to be the zero vector in Rd.
In the limit n —> oo the gene frequencies take values in the d-dimen-

sional simplex

On functions f e^ 2 (K d ) the generator An can be seen to converge, in an
appropriate sense, to

The matrix xi(Sij — Xj) is the Wright-Fisher diffusion matrix. Similar models,
with slightly more complicated random sampling mechanisms, yield similar
differential operators with different diffusion matrices. Provided the mar-
tingale problem for these operators is well-posed, it is often possible to
show that the discrete process on Kn

d converges in law to the diffusion with
generator A (see ref. 11 for details).

Let us consider the case d= 1 and let us introduce the following objects.

1. ("state space") K1 = [0, 1].
2. ("diffusion function") 3fLip is the class of functions g: [0, 1]->

[0, i) satisfying
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3. ("attraction point") 8e [0, 1].

4. ("attraction constant") c e(0, oo).

With these ingredients we consider the following Stochastic Differential
Equation (SDE) on [0, 1]:

where (B,)t>0 is standard Brownian motion. We call (6) "the basic diffu-
sion equation." We define a linear operator A with domain <^2[0, 1] (the
two times continuously differentiable real functions on [0, 1]) by putting

The following is known:2

Theorem 0.1. For each g €$?Lip, Oe [0, 1] and c e [0, oo), and for
each initial distribution on [0, 1], the SDE (6) has a unique strong solu-
tion (X,)t>0. The martingale problem for A in (7) is well-posed and the
law of (X,)t>0 solves the martingale problem for A. The operator A has a
unique extension to a generator of a Feller semigroup and ( X , ) t > 0 is the
associated Feller process.

The choice g(x) = x( 1 — x) corresponds to the Wright-Fisher case. The
diffusion equation (6) and its generalizations to higher dimensions will play
a key role in the present paper. In the following sections we show how it

2To get these results, extend the diffusion function g by putting g(x) = g ( 1 ) ( x ^ 1 ) ,
g(x) = g(0) (x< 0), and extend the drift by the same recipe. It is easy to show that any solu-
tion (X,)l>0 of the SDE on R satisfies P[X,e [0, 1 ] V/ >0] = 1. Now, by Skorohod's
Theorem (ref. 14, Theorem 5.4.22), there exists a weak solution of (6). The Yamada-
Watanabe argument (ref. 14, Proposition 5.2.13) gives strong uniqueness, and therefore
strong existence as well as weak uniqueness (ref. 14, Proposition 5.3.23 and 5.3.20). It follows
that the martingale-problem is well-posed (ref. 14, Corollary 5.4.8 and 5.4.9). The process
(X,)l>0 has the Feller property (ref. 20, Corollary 11.1.5) and its generator G clearly extends A.
In fact, it is the only generator of a Feller semigroup to do so. For let G be another generator
extending A, then there exits an associated Feller process (X,),^0 (ref. 11, Theorem 4.2.7)
that solves the martingale problem for A (ref. 11, Theorem 4.1.7). It follows that ( X , ) , ^ a and
(X,),^0 have the same distribution for all initial conditions, and hence G = G.

In the special case that gs^2[0, 1], it is known that G is the closure of A (ref. 11,
Theorem 8.2.1), but for general g e HLip this seems to be an open problem. (In this respect,
the loose remark in ref. 1, p. 7, that the closure of the operator G mentioned there generates
a Feller semigroup seems unfounded.)
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has been used as a starting point for the construction and analysis of an
infinite system of interacting diffusions.

0.2. The Hierarchical Model

In the model described in the previous section, all individuals have
equal chances of interaction with all other individuals. A more realistic
model takes into account the effects of isolation by distance. To this aim,
we introduce the following additional objects:

5. ("index space") For N^2, let QNbe the N-dimensional hierarchical
lattice

With componentwise addition (mod N), QN is a countable group.

6. ("distance") Let d: QNx.QN-* N0 be the hierarchical distance

7. ("interaction constants") Let ( c k ) k > 1 be strictly positive constants,
satisfying

8. ("noise") Let ( { B ( ( t ) } f e 0 f i ) , ^ 0 be an i.i.d. collection of standard
Brownian motions.

With the above ingredients, we consider the process

with state space [0, 1]N given by the following set of coupled SDE's:
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where X f k ( t ) is the block average

The system in (13) can be interpreted as a model for the time evolution of
gene distributions in an infinite population (see refs. 5 and 17 for the origin
of the model and ref. 11, Chapter 10, for more background). The popula-
tion is organized in sites, groups, clans, villages etc., where N sites form a
group, N groups form a clan, N clans form a village, and so on. The index
space QN labels sites by numbering sites within a group by a number £, =
0,..., N— 1, numbering groups within a clan by a number £2 = 0,..., N— 1,
and so on. (For example, if the distance between two sites £ and n is
d(E,n) = 2, then £, and n share the same village and clan but belong to dif-
ferent groups.) The proportion of allele 1 at a given site E at some time t
is described by X N ( t ) . Initially, all proportions are supposed to be 9, and
they evolve due to migration and random sampling, as in (6). However, the
migration is now supposed to cause interaction between sites mutually (see
Eqs. (16)-(17) below), instead of between sites and some infinite reservoir.
The meaning of the numbers X f k ( t ) is the following: X N ° ( t ) = X N ( t ) is
the proportion of individuals of allele 1 at site £; XN, l(t) is the proportion
in the group that E belongs to; X N , 2 ( t ) is the proportion in the clan that
£, belongs to, and so on. We call the set {n: d(n, £)^k} the "k-block"
around £ and the numbers X N , k ( t ) the "k-block averages" around £,.

The factor c k N l - k in (13) describes the strength of the interaction
(due to migration) between a site £ and the k-block around £. The strength
of the attraction decays by a factor 1/N each time we go up one step in the
hierarchy. As we shall see later, precisely this decay will give rise to non-
trivial behavior in the limit as N-* oo.

The next theorem follows from ref. 19, Theorem 3.2:

Theorem 0.2. Let N^2,g e H,,ck e [ _ 0 , c o ) ( k ^ 1 ) , ' E l k c k N - k < c o
and &e [0, 1]. Then the system of SDE's in (13) has a unique strong solu-
tion satisfying

We need to check that ref. 19, Assumption [B-2]' is satisfied. The drift
term in (13) can be rewritten as
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where

Hence the drift term is in fact a pair interaction between the different com-
ponents. A little calculation shows that Z^s«w a N ( £ , n ) = Zr=1 c k N l - k

V£eQN. Condition (11) is therefore exactly what is required in ref. 19,
Assumption [B-2]'.

0.3. The Local Mean-Field Limit N-coo

We shall study the system in (13) in the limit as N-> oo. The 1-block
average XN, l ( t ) is the average of a large number of diffusions that behave
independently apart from their linear drift towards block averages.

Let At be small and let A X N ( t ) : = X N ( t + At) - X N ( t ) . Let J5^ be the
cr-field of events up to time t. Then (13) can, in a heuristic way, be rewritten
as

It follows that for the 1-block averages we have

Note that in the first line the term with k = 1 drops out. Note further that
in the second line the sum Sc^cosa is over N terms. Hence both expecta-
tions are of order N - l . We are therefore led to believe that the 1-block
average X N , l ( t ) moves slowly w.r.t. X N ( t ) , namely, its time scale is Nt
rather than t. For large N this means that X N , 1 ( t ) stays essentially fixed at
its initial value 6. Inserting this into (13) and neglecting terms of order 1 /N,
we see that the single components X N ( t ) satisfy a limiting SDE of the type
(6) with c = cl. The limit N-+ oo thus corresponds to a "local mean-field"
limit. On the local space scale of 1-blocks, the interaction reduces to a
linear drift towards an essentially fixed block average, so that the single
components are asymptotically independent (in physics language: the



250 den Hollander and Swart

system shows "propagation of chaos"). This behavior, however, occurs
only locally. We shall see later that on larger space scales the interaction
still gives rise to nontrivial correlations between components.

A detailed study of the basic diffusion equation (6) is the key to under-
standing the system in (13). In particular, the invariant measure of (6)
plays a key role. The following theorem is generally known (it can be
proved using the coupling mentioned in (63)).

Theorem 0.3. For every g eHLip, 0e[0, 1] and c e(0,oo), the
SDE in (6) has a unique equilibrium vg,c and is ergodic, i.e., for any
x e [ 0 , 1] the law of X, given X0 = x converges weakly to vg,c as t-> oo.
The measure vg,c is given by

where Zg,c is a normalization constant depending on g, c and 6.

For 0 E(0,1), the density of vg,c solves the equation (c(x — 9) +
(d/dx) g ( x ) ) v g , c ( x ) = 0 (compare (65) and (82) (ii)).

0.4. The Renormalization Transformation

The reasoning above indicates that, for large N, the single components
X N ( t ) perform a diffusion as in (6), with as a stochastic attraction point the
1-block average X N , 1 ( t ) . Since the single components reach equilibrium on
time scale t (i.e., fast compared to time scale Nt of the block), we expect
that at times of order Nt their conditional distribution given the 1-block
average is given by

Now again consider the heuristic formula (19). Formula (21) suggests that

This motivates the following definition of our renormalization transforma-
tion: for every g e HLip, c e(0, oo)
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From ref. 6, Lemma 2.2 it follows that:

Theorem 0.4. For all c e(0, oo): FcHLlpC HLip.

Theorem 0.4 makes it possible to speak about the iterates of Fc, which
we shall need below.

0.5. Multiple Space-Time Scale Analysis

Combining (19) with (22) and (23), and neglecting higher order terms
in N, we find the following conditional expectations for XN , 1( t ) :

Note that l^^i} = 1 if and only if the 1-block around £ is the 1-block
around n. The conditional expectations above seem to indicate that 1-block
averages, when viewed on time scale Nt, behave as diffusions like the single
components, but with the local diffusion rate g replaced by Fc g. This is
precisely what is proved in ref. 7. In fact, the reasoning can be extended to
arbitrary k-blocks. The local diffusion rate is then (Fc/[° ••• °FC) g. The
time scale for the k-blocks turns out to be Nkt. Indeed, we must rescale
space and time together: each time we go up one step in the hierarchy we
have larger blocks moving on a slower time scale.

To be precise, the heuristic formula (21) is justified for general k by
the following theorem (ref. 7, Theorem 1). Here, for each N, we take
0 = (0, 0,...)eQN as a typical reference point, and we denote weak con-
vergence by =>.

Theorem 0.5. Fix g e HLijn 0 e[0, 1], t>0 and k^0 . Then as
N->oo

where (Zk,..., Z0) is a "backward" time-inhomogeneous Markov chain with
transition kernels

and F(k)g :=(FCk° ••• °FC) g is the k th iterate of the renormalization
transformations Fc applied to g (F(0)g = g).

The joint distribution of the (Zk,..., Z0) above is determined by the
"backward" transition probabilities in (26) and the distribution of Zk. The
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latter depends on t and can be read off from the next theorem (ref. 7,
Theorem 1). Here the =*• denotes weak convergence in path space ^[0, oo).

Theorem 0.6. Fix g e HLip, 0 e [0, 1 ] and k ^ 0. Then as N -> oo

where ( Z g , c ( t ) ) t > 0 is the unique strong solution of the single component
SDE on [0, 1] given by

For k = 0 this result justifies our heuristic belief that the single components
follow the basic diffusion equation (6), and for k = 1 it justifies our formula
(24). For general k^ 1 it describes the behavior of the k-block averages.

As a side remark, we note that the initial condition X N ( 0 ) = 9 in (13)
can be generalized considerably. In ref. 5, Section 2, and ref. 7, Remark
below Eq. (1.5), { X N ( 0 ) } ^ e f i N is taken to be distributed according to a
homogeneous ergodic measure u with E u ( X N ( 0 ) ) = d for all £eQN. For
instance, one can take the X N ( 0 ) to be i.i.d. with mean 9. In this case,
Theorem 0.6 changes, in the sense that the distribution of Z g , c 1 (0 ) is given
by u rather than Sff. The distribution of ZF(k)g ,Ck+1(0) for k ^ 1 is, however,
still <V In view of this, the model where each component starts in 9 is the
most natural one.

0.6. Large Space-Time Behavior and Universality

Theorems 0.5 and 0.6 describe the behavior of our system in the limit
as N-> oo. We next study the system by taking one more limit, namely, we
consider k-blocks with &->oo. This gives rise to two more theorems:
Theorem 0.7 describes the behavior of the Markov chain in Theorem 0.5
for large k, while Theorem 0.9 describes the behavior of the renormalized
diffusion function in Theorem 0.6 for large k. The translation of these
theorems in terms of the infinite system is described in Theorems 0.8
and 0.10.

As a joint function of 8 and dx, the equilibrium v g , c ( d x ) in (20) is a
continuous probability kernel on [0, 1 ]. Let p[0, 1 ] denote the probability
measures on [0, 1], equipped with the topology of weak convergence, and
let H [0, 1] denote the space of all continuous kernels K: [0, 1 ] -> p[0, 1 ],
equipped with the topology of uniform convergence (see also Section 1.3).
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A kernel K evaluated in a point x is denoted by Kx. Uniform convergence
of probablitity kernels implies pointwise convergence, so Kn -> K in the
topology on H [0, 1] implies Kn

x^>Kx for all x e [0, 1].
We denote the composition of two probability kernels Kx(dy) and

Lx(dy) by

By Theorem 0.5, in the limit as N->oo, the conditional probability of
X N ( N k t ) e dy given X N , k ( N k t ) = x is given by the kernel

with the composition as in (29). The following can be found in ref. 1,
Eq. (1.7):

Theorem 0.7. Fix g e HLip. As k -> oo, then in the sense of uniform
convergence of probability kernels:

where the limiting kernel K(cc) is universal in g and given by

Note that, for any k^1, the conditional probability of X N , 1 (N k t )e dy
given X N , k ( N k t ) = x is described by the kernel VF( k -1) • • • vf{ g-c'-n, which
is just the kernel in (30) with g replaced by F(1)g and (ck)k>l replaced by
( ck)k>1+1. Using Theorem 0.5 and the fact that, with Z(t) as in (28), we
have E[Z(t)]=0=9 W^sO, Theorem 0.7 translates into the following state-
ment about the infinite system:

Theorem 0.8. Fix geHL i p , 0 e[0, 1], 1^0 and t>0. Then, in the
sense of convergence in law:

where the law of Y is given by j S f ( Y ) = (1 - 0) 60 + 66l.

Thus, the system locally ends up in one of the traps 0 or 1. This
behavior is called clustering and should be interpreted as saying that, for
large N and k, the block averages spend most of their time close to the
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boundaries of the state space [0, 1]. Condition (10) in fact characterizes
the clustering regime for the system in the N -> oo limit. For finite N,
clustering of the system can be related to the recurrence of the random
walk with kernel a N ( £ , n ) given in (17) (see ref. 3). For a discussion of
clustering in the case g(x) = rx(1 —x), both for N-> oo and for finite N, see
ref. 7, Theorems 3 and 6.

We next turn to the behavior of F(k)g as k-* oo. Note that since vg,c

itself depends on g, the transformation Fc is a non-linear integral trans-
form. As such it is a rather difficult object to study in detail. Nevertheless,
ref. 1 gives a complete description of the asymptotic behavior of its iterates.
The results show that there is a unique "fixed shape" g* e HLip that attracts
all orbits after appropriate scaling, as follows:

Theorem 0.9. (a) Let g*(x) =x(1 — x). The 1-parameter family
of functions g = rg* ( r > 0 ) are fixed shapes under Fc:

(b) For all g e HLip

where <r*: = £k
=1c -1 .

(c) Let

Then for all g e H1

where

To be able to state the implications of Theorem 0.9 for the infinite
system, we must rescale the time once more, now to compensate not for the
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large N but for the large k. Indeed, by an easy scaling property of the Zg, c

defined in (28), we can rewrite Theorem 0.6 as

In view of (35), the most interesting behavior now occurs when akck tends
to some limit as k -> oo. From Theorem 0.9 (b) we get, by a simple applica-
tion of ref. 20, Theorem 11.1.4, the following:

Theorem 0.10. If lim^^ akck = c* e[0, oo), then in the sense of
weak convergence of the law in path space ^[0, oo):

For example, if ck = abk with a e (0, oo) and b e (0, 1), then lim^ xakck =
a2(b/(1-b)).

The results in Theorems 0.9 and 0.10 show that our system displays
complete universality on large space-time scales. For large k (and in the
limit as N-> oo) the k-blocks approximately perform the diffusion in (28)
with diffusion function g* and with attraction constant c*, and this
behavior is completely universal in the diffusion function g of the single com-
ponents.

Theorem 0.9 (c) is important for the study of how clustering occurs. In
fact, under (37) the clustering turns out to be universal in g (see ref. 7,
Corollary at Theorem 5). It turns out that the class H1 in (36) is sharp: if
lim s u p x _ 0 x - 2 g ( x ) = 0 or lim sup,,._0 (1 — x ) - 2 g(x) = 0, then akF

(k)g
does not converge in the norm ||.||HL. (see ref. 1).

1. RESULTS FOR d^1

In this section we present our best results towards extending the model
in Section 0 to higher dimension. In Sections 1.1 and 1.2 we formulate a
general program, and specify the particular model that is the subject of the
present paper. In Section 1.3 we present our theorems on the renormaliza-
tion transformations Fc (c e(0, oo)) arising in that model. The theorems
are stated in terms of certain classes of functions H' and H". These are
essentially the largest domains on which we can define our renormalization
transformations Fc, resp. the iterates F ( k ) . For the results to make sense, it
remains to be shown that these classes are not empty. This task is, with
limited success, taken up in Section 1.4. In Section 1.5 we indicate some of
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the difficulties that make life hard in d^2. Finally, in Section 1.6, some of
the more urgent open problems are discussed.

Proofs are given in Sections 2-4.

1.1. Generalizations to Different State Spaces

The renormalization techniques described in the last section are not
restricted to models with state space [0, 1]. The construction of more
general models could be described in the form of the following program:

1. Choose an open convex domain D c Rd and a class H of diffusion
matrices on D (i.e., the equivalents of [0, 1] and HLip in Section 0). Prove
(as in Theorem 0.1) that for all g e H, 0 e D, c e(0, oo) the martingale
problem is well-posed for the differential operator

2. Prove (as in Theorem 0.3) ergodicity for the diffusion given by A,
and define a renormalization transformation Fc by

where vg,c is the equilibrium associated with (41). Show that H is closed
under Fc (as in Theorem 0.4), and show that the iterates F(k)g and the
associated kernel Kg, (k) describe the multiple space-time scale behavior of
the associated infinite system (i.e., prove analogues of Theorems 0.2, 0.5
and 0.6).

3. Investigate the limiting behavior of K g , ( k ) and F(k)g as k -> oo (i.e.,
try to prove equivalents of Theorems 0.7-0.10).

So far, such a program has only been carried out completely for one-
dimensional state spaces, as explained in Section 0. For the program to get
off the ground, one must at least be able to speak about the iterates F(k)g.
In practice, this leads to conflicting demands on the class H. When H is
chosen large, it turns out to be difficult to show uniqueness for the mar-
tingale problem for A in (41), and therefore the program already stops at
step 1. On the other hand, when H is chosen too restrictive, it turns out
to be hard to show (in step 2) that Fc g e H, i.e., we can define Fc g but not
its iterates F(k)g. At present, these difficulties present a serious obstacle in
trying to carry out the program above completely for state spaces in
dimensions d^ 2.
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In the present paper, we focus on the construction of F(k)g and K g , ( k )

and the study of their limiting behavior for a certain class H of "isotropic"
diffusion matrices in dimensions d~^2. We leave the study of the associated
infinite system to be treated in future work. The difficulties mentioned
above are dealt with in the following way. We introduce subclasses ,H' and
H" that are essentially the largest subsets of H on which Fc g resp. F(k)g
can be defined. (It may be that H = H' = H", but this can at present not
be proved.) In Section 1.3, we show that on these classes it is possible to
carry out step 3 of the above program completely. In particular, we show
that there exists a unique fixed shape g* under Fc that attracts all g under
appropriate scaling, and also, that there exists a universal limiting kernel to
which all K g , ( k ) converge. In Section 1.4, we investigate under what con-
ditions Fc g and F(k)g can be defined, i.e., we find conditions for g e H'
and g e H". The results in this section are not as conclusive as those in
Section 1.3, but we can show that many functions are in H', and at least
in one example we can show that H" is not empty.

1.2. Isotropic Models

We consider as state space the closure D of an arbitrary open, bounded
and convex set D c Rd. On D, we consider a class H of isotropic diffusion
matrices. We say that a diffusion matrix gtj(x) is isotropic if it has the form
gij(x) = 8tjg(x), where g: D-> [0, oo) is some non-negative function, and
Sjj =1 if i = j and StJ = 0 otherwise. From the form of the renormalization
transformation we see that for an isotropic diffusion matrix

so if g is isotropic, then Fc g is isotropic. On the class of isotropic diffu-
sions, Fc is essentially just a transformation of functions g: D-> [0, oo).

In the special case that D = Kd, the d-dimensional simplex, we indicate
briefly how such isotropic models can arise as continuous limits of discrete
models. Consider the random sampling procedure described in Section 0.1.
Suppose that instead of replacing pairs we replace (d+1)-tuples, in the
following manner. After an exponential time, a (d+ l)-tuple of individuals
is selected. If all d+1 individuals belong to different types, then they are
all replaced by one randomly chosen type. Otherwise nothing happens.
A little calculation shows that this procedure gives rise to the following
diffusion matrix:
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By a simple transformation of the state space, the matrix d / ( d + 1 ) — 1
can be diagonalized to 6^. In this way one arrives at an isotropic model
with gy(x) = d t j g ( x ) , where g is given by (the transformed function of)
x ^ ( 1 — £ k x k ) Y l k x k . More general functions g can be obtained by
making the rate of the random sampling process dependent on the state of
the system.3,4

1.3. Renormalization in d^1: Theorems 1.1-1.4

We introduce the following objects:

1. ("state space") D C Rd is a bounded open convex set, D is its
closure and dD = D\D.

2. ("fixed shape") g*: /)-> R is the unique continuous solution of

with A = £d= j d 2 /dx 2 the Laplacian.

3. ("diffusion function") H is the class of functions g: D-* [0, oo)
satisfying

With these ingredients we let our basic diffusion equation be the SDE:

3 In Section 0.1, the Wright-Fisher diffusion was introduced on Kd. In dimensions d^2, this
diffusion is non-isotropic. It is not hard to see that it is a fixed shape under Fc. Therefore
it is expected that in d^2, and on a larger class than only the isoptropic diffusions treated
in the present paper, the transformation Fc has many different fixed shapes, each with their
own domain of attraction.

4 In d= 1, the fixed shape g* on the simplex appears to be the most natural object when seen
as the continuous limit of a discrete model. Comparing the fixed shape g* that we find in
our analysis below with the diffusion matrix in (44), it turns out that the formulas coincide
in d = 1, 2 but, remarkably, not in higher dimensions.

4. ("attraction point") t e D.

5. ("attraction constant") ce(0, i).
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where (B t) t > 0 is standard d-dimensional Brownian motion. Solutions of
(47) solve the martingale problem for the operator A with domain D ( A )
given by

where V = (d/dx i , . . . , d/dxd) and • denotes inner product. The martingale
problem for A is well-posed if and only if, for each initial condition on D,
the SDE (47) has a unique weak solution (X,)t>0. In this case, the
operator A has a unique extension to a generator of a Feller semigroup,
and (X,)ts,0is the associated Feller process.5

By a continuous probability kernel on D we mean a continuous map
K:D^>0>(D), written x*->Kx, where 0>(D) is the space of probability
measures on D, equipped with the topology of weak convergence. We
equip the space H(D) : = ^(D, p ( D ) ) of probability kernels on D with the
topology of uniform convergence. (Since p ( D ) is compact and Hausdorff,
there is a unique uniform structure defining the topology, and we can
unambiguously speak about uniform convergence of p(D)-valued func-
tions.) There exists a natural identification between continuous probability
kernels K e H ( D ) and continuous positive linear operators K:*&(D)-*
^(D) satisfying K1 = 1, the correspondence being given by

In this identification, the composition of two kernels is given by

The convergence of operators Kn-> K in the topology on k(D) is equiv-
alent to the convergence of the functions Knf-> Kf, uniformly on D for all
f eV(D).

In order to be able to define our renormalization transformation, we
introduce a new class H" of diffusion functions as follows:

3'. H' is the class of all functions g e H such that for all c e(0, oo)
and O e D:

(1) The martingale problem associated with the operator A in (48)
is well-posed.

5 For a discussion of these facts, see the footnote at Theorem 0.1.
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(2) The diffusion associated with (47) has a unique equilibrium vg ,c .

Here, by an equilibrium we mean a stationary distribution of (47). As we
shall see in Section 1.4, these assumptions are satisfied for many g e H. It
turns out that the map 0t-> vg,c is continuous, and so the equilibrium of (47)
is a continuous probability kernel on D as a function of the parameter 0.

Theorem 1.1. For each g e H" and c e(0, oo) there exists a con-
tinuous probability kernel v g , c e H ( D ) such that, for each 6 e D, vg,c is the
equilibrium of the diffusion in (47).

For g e H' and c e(0, oo), we now define our "renormalization trans-
formation" as

In order to speak about the iterates of Fc, we need a subclass of H' that
is closed under the Fc's. For this we may take the largest such subclass, so
we define one more class of diffusion functions as follows

3". H" is the union of all ^ C H' such that F c(<Z)C g for all
c e(0, oo).

With these definitions, we have the following result.

Theorem 1.2. For all c e(0, a o ) : F c ( H ' ) c H.

It is at present not known if H = H', but Theorem 1.2 implies at least
that if (!) H' = H, then H" = H.

The next result generalizes Theorem 0.7 (recall the composition of
probability kernels defined in (50)):

Theorem 1.3. For g e H" and k^1, let K g , ( k ) be given by

where F(k)g:=(FCk° ••• °FCi) g is the k th iterate of the renormalization
transformations Fc applied to g (F ( 0 ) g = g). If E k c - l = co, then in the
sense of uniform convergence of probability kernels:
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where the limiting kernel K(x} is universal in g and given by

where (Be
t)t>0 is Brownian motion starting in 6 and T := inf{t^0: Be

tedD}.

The following generalizes Theorem 0.9:

Theorem 1.4. (a) Let g* be as in (45). If g* e H', then rg*e H"
for all r>0. Moreover, the 1-parameter family of functions rg* ( r > 0 ) are
fixed shapes under Fc:

(b) If E k C k - 1 = 0°, then for all g e H"

where <7 f c : = Ek=1c-1 '.

(c) If, in addition to the assumptions in (b), there exists a A >0 such
that g^Ag*, then

where the norm ||.||H is given by

In d=1, formula (57) is in fact known to hold under somewhat weaker
conditions on g (see Theorem 0.9 (c)).

1.4. Two Renormalization Classes: Theorems 1.5-1.10

The results in the last section are useful only after we come up with
some examples of functions g in the classes H' and H". In this section we
try to find sufficient conditions for g e H' and for g e H".

The following theorem shows that the assumption about ergodicity in
the definition of H' is in most "neat" cases satisfied.
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Theorem 1.5. Fix g e H, O e D and c e (0, oo). Assume that g is
locally Holder continuous (with positive exponent) on D, and that the
martingale problem associated with the operator A in (48) is well-posed.
Then the SDE (47) has a unique equilibrium vg,c and is ergodic, i.e., for
each initial distribution the law of X, converges weakly to vg,c as t-> oo.

Thus, for locally Holder g, proving that g e H' reduces to proving that
the martingale problem for A in (48) is well-posed. As usual, existence of
solutions is no problem:

Theorem 1.6. For each g e H, O e D and c e [0, oo), and for each
initial distribution on D, the SDE (47) has a D-valued, continuous, weak
solution (X,)t>0. The law of ( X , ) t > 0 solves the martingale problem for the
operator A in (48).

In fact, it seems reasonable to conjecture that uniqueness of the mar-
tingale problem, too, holds for all g e H, and (assuming ergodicity can also
be proved), that H' = H. As we saw in Theorem 1.2, this would imply
H = H' = H". However, it is not known whether uniqueness for the mar-
tingale problem holds for general g e H.6

In d=1, uniqueness can be proved for many g e H, and the explicit
formula for the equilibrium vg,c in (20) can be used to prove that, for
all g, Fc g is sufficiently nice. Indeed, the Yamada-Watanabe argument
(ref. 14, Proposition 5.2.13) and ref. 1, Remark below Theorem 5, show
that:

Theorem 1.7. Assume that d=1. If g e H and ^/g is Holder
^-continuous, then g e H' and g e H".

In higher dimension, results are much harder to get. The standard
theorem for strong uniqueness of multi-dimensional diffusions (ref. 14,
Theorem 5.2.9) and Theorem 1.5 give:

Theorem 1.8. Assume that d^ 1. If g e H and ^/g is Lipschitz,
then g e H'.

If we restrict ourselves to initial conditions x and attraction points 9
that lie within D, then the conditions for strong uniqueness can be
weakened. We adopt the following definitions. If x e dD, then n(x)e Rd

is called an (outward) normal to D in x if and only if |n(.x)| = l and

6 Even in d = 1 this question seems to be open, although for each g e H it is known that there
exists a unique extension of A to a generator of a Feller semigroup. For this extended
operator the martingale problem, of course, is well-posed.
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{y e Rd : ( y - x ) . n ( x ) ^ 0 } n D = 0. A set D C Rd is called regular if and
only if D is open, bounded, convex, and there exists a function m e ^3(D),
satisfying m = 0 on 3D and m < 0 on D, with the property that for all
x e dD

Note that, for each x e dD, Vm(x) is the unique normal to D in x. With
these conventions we have the following theorem.

Theorem 1.9. Let g e H, 9 e D and c e (0, oo). Assume that D is a
finite intersection of regular sets. Let g locally be Lipschitz on D, and
assume that for all x e dD, all xne D with xn -> x, and each normal n(x) to
D in x:

Then any solution (X(t))t>0 of (47) with initial condition X(0) = x (x e D)
satisfies

and strong uniqueness holds for the SDE (47) with initial condition x.

The idea behind this theorem is that, since *Jg is locally Lipschitz on D,
a modification of the standard proof for strong uniqueness shows that solu-
tions of (47) are unique up to the first hitting time of the boundary, while
condition (60) guarantees that this time is infinite. The essential difficulties
in proving uniqueness occur when the diffusion hits the boundary in a
finite time. Although the conditions on g in Theorem 1.9 are considerably
weaker than those in Theorem 1.8, the result is still not very satisfactory for
our purposes. Indeed, we want to vary 9, and so if (60) is to hold for all
O e D, then we must have "sublinear" behavior of g at the boundary:

For example, it can be seen that for the fixed shape g* condition (62) is
violated. Consequently, Theorem 1.9 cannot even be used to give a satisfac-
tory definition of( Fcg*)(6) for all 9 e D.

Sufficient conditions for g e H" are even harder to come by than suf-
ficient conditions for g e H'. The following special case, however, shows us
one example where Fe g* can be defined in a satisfactory way and where
H" can be shown to be non-empty.
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Theorem 1.10. Let D= {x e Rd : |x| < 1}. Then g*(x) = ( 1 / d )
(1-|x|2) and g*e H".

This last result is actually the only case in d ̂  2 where we are able to
prove that H" is not empty. In view of Theorem 1.4 this is not a very
satisfactory result, since we would like H" to at least contain a neighbour-
hood of g* in order for the universality expressed in (56) to be meaningful.
But nothing better is available at present.

1.5. Difficulties for d>2

Higher-dimensional diffusions differ fundamentally from one-dimen-
sional diffusions. In general they are technically much harder to treat. In
our situation: let (X*) t > C l and ( X y ) l > 0 be solutions of (47) with initial con-
ditions x resp. y, adapted to the same Brownian motion, and let g e H be
Lipschitz. In d= 1 it can be shown (compare ref. 6, Eq. (2.47)) that

It is essentially with the help of this coupling that one is able to prove
strong uniqueness for solutions of (47), convergence to equilibrium, and the
property that the class HLip in (5) is closed under the transformation Fc. In
d^2, however, (63) does not hold. Indeed, let (S,)t>0 be the semigroup
associated with the process ( X t ) l > 0 , i.e.

A direct consequence of (63) is the following: if f is Lipschitz with con-
stant L, then S,f is Lipschitz with constant Le - c t . However, in d> 2 it is
possible to show that, for an appropriate g and c, there exist t>0 and
Lipschitz f such that the Lipschitz constant of S,f is strictly larger than the
Lipschitz constant of f. Therefore (63) cannot hold for these g and c.

Thus, the diffusion (47) behaves differently in higher dimension in
lacking a good coupling. It also differs in lacking reversibility. By defini-
tion, the diffusion in (47) is reversible if and only if its equilibrium v g , c ( d x )
solves the vector equation

Diffusions in d= 1 are typically reversible, and we can solve (65) explicitly
for vg,c to get the formula (20). In d^2, however, no matter what D, there
exists no g e H' such that (47) is reversible for all (!) d e D. Related to this
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is the fact that in general no explicit formula for vg,c is known. Similarly,
for general D no explicit formulas are known for the limiting distribution
A^00' and for the fixed shape g*. Since for d= 1 the proofs of Theorems 0.7
and 0.9 were based on explicit manipulations with vg,c and g* (see ref. 1),
the generalization to d^2 forces us to use more abstract methods in our
proofs. We believe that these methods (in particular the proof of
Lemma 2.4 and its use) also give a deeper understanding of the case d=1,

1.6. Open Problems

The most urgent open problems concern the question for which func-
tions g it is possible to prove g e H" (recall the definitions of H', H" and
Fc in Section 1.3). In particular, one may ask:

1. Is g* e H' for all bounded open convex D?
2. Is H' = H for all bounded open convex D?

Since g* is locally Holder on D, it is sufficient for question 1 to show that
uniqueness holds for the martingale problem associated with A in (48) (by
Theorems 1.5 and 1.6). If the answer to question 1. is affirmative, then at
least g*e H" for all D (by Theorem 1.4 (a)) . If the answer to question 2
is affirmative, then it implies that H" = H, but question 2 certainly
represents a hard problem.

In another approach, one may try to show that H" is not empty by
deriving more properties for Fc g, given that g is nice. In analogy with the
situation in d= 1, one may ask:

3. If g e H is Lipschitz, then is Fc g also Lipschitz?
4. If g € .H is Lipschitz, then does it follow that g e H'?

For question 3 one needs to control the behavior of the equilibrium vg,c

as a function of 0. In the absense of an explicit formula, this can be
attempted with coupling methods. In fact, the coupling that underlies
Theorem 1.8 can be used to show that if ^/g is Lipschitz with a sufficiently
small Lipschitz constant, then Fc g is Lipschitz. However, a better coupling
than this one is hard to find in d^2, and question 3 is still open. So is
question 4, which is a well-known and hard open problem in the field.

2. THE RENORMALIZATION TRANSFORMATION

2.1. Notation

Let £<= Rd be open or closed. By B(E) we denote the bounded Borel-
measurable real functions on E. For u a finite measure on E and f e B(E)
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we write

The real continuous functions on E are denoted by ^(E), and %,(-£') is
the Banach space of bounded continuous functions with norm ||/|| : =
sup^e/? | f ( x ) | . By < g n ( E ) we denote the functions f e <#(E) such that all
derivatives up to order n exist on the interior of E and can be extended to
functions in <g(E). By definition ^M(E) := (]„%"(£). We sometimes write
fe^"(E) when we mean Lnf\Ee'^n(E), where f|E is the restriction of f to E.
By % n ( £ ) , ^^(E) we denote functions in % n ( E ) , ^X(E) that have a com-
pact support in E.

When X=(X,)t>0 is a continuous E-valued stochastic process and
Fx : = a(Xs: s e [0, t]) is the filtration generated by X, we say that X
solves the martingale problem for a linear operator A on B(£) if and only
if

is an ^f-martingale for all f e D ( A ) , the domain of A. We identify a linear
operator A with domain D(A) with the linear space {(f, Af): f e D > ( A ) } .
Closure always refers to the norm ||/||. We say that a Feller semigroup
(S,)t>0 on B(E) is related to X if and only if for all f e B(E) and s, t^0

Finally, the notation $4 or s g , c is used generally (without specification of
the domain) for the differential form

where V = (d/dx,,..., d/dxd), the • denotes inner product, and A = V • V =
Sf=i 82/dxJ is the Laplacian. We write \x\ = ^ / x . x for the Euclidian norm.

2.2. Preliminaries

We begin with two lemmas collecting well-known facts. In Section 1.3
we already mentioned the following.

Lemma 2.1. Let k (D) be the set of continuous probability kernels
on D, equipped with the topology of uniform convergence, and let k '(D)
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be the space of all positive linear operators K: #(D) - » ^ ( D ) satisfying
k1 = 1, equipped with the strong operator topology. Then a homeomorfism
between k ( D ) and H ' ( D ) is given by

In particular, Kn converges to K in the topology on k (D) if and only if

Proof of Lemma 2.7. Let K e k ( D ) , and for f e<g(D) define
(K'f)(x) := <Kx | />. By the continuity of K, the function x^(Kx /f> is
continuous. It is obvious that the map f—> K'f is positive and linear, and
therefore continuous, and satisfies K'1 = 1. Conversely, by the Riesz-
Markov theorem (ref. 16, Theorem IV.14), each such K' defines a probabil-
ity measure Kx for each x e D. Since K'f e tf(D) for each f e (D), the map
x — > K X is continuous in the weak topology. Finally, p ( D ) is continuously
imbedded in (&(D}*, the dual of ^(D), so k(D) is continuously imbedded
in <&(D, 'tf(D)*), if we equip the latter with the topology of uniform con-
vergence, where the uniform structure on <<?(£>)* is given by the semi-norms
l*~* K' /)!• The topology of uniform convergence in '£(5, <&(!))*) is then
defined by the semi-norms (/?/)/e«'(,D) given by

If KeJT(D), thenpf(K) = supxeD\(Kx\fy\ = \\Kf\\, so uniform conver-
gence of probability kernels corresponds to convergence of the associated
operators in the strong operator topology. From now on we identify kernels
with linear operators as in (70).

Since D is convex, the Dirichlet problem on D always has a solution.
We shall be interested in harmonic functions and functions of constant
Laplacian.

Lemma 2.2. (a) For every <j>e'£(dD) there exists a unique
/e^(Z))n^2(Z>) that solves

The solution is given by
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where H e k ( D ) is the probability kernel given by

where (Bx
t)t>0 is Brownian motion starting at x and

(b) There exists a unique g* e ^(D) n <$2(D) that solves

The solution is given (with r as in (76)) by

and satisfies g* > 0 on D. There exists an L < oo such that

Proof of Lemma 2.2, Formulas (74) and (75) can be found in
ref. 14, Proposition 4.2.7 and Theorems 4.2.12 and 4.2.19. For (78) see
ref. 14, Problem 4.2.25. The fact that g* >0 on D can easily be deduced
from the representation (78), but alternatively one may consult ref. 15,
Theorem 2.5. To prove (79), we assume without loss of generality that
y = 0 and x^ >0 V*eD, where for any x e Rd we write x = (xl,..., xd). Now
choose L such that \x — x\ ^ L for all x, x e D. Define a stopping time f by

where Bt = (B1,..., Bd
t) is d-dimensional Brownian motion. By ref. 14,

Problem 4.2.25, we have

2.3. Proof of Theorem 1.1

Theorem 1.1 follows directly from the following lemma. Formula (82)
(ii) below will be essential for the rest of this section.

Lemma 2.3. Fix g e H' and c e (0, oo). For any O e D, denote by
(St)t^o the Feller semigroup related to the solution (Xt)t>0 of the mar-
tingale problem associated with A in (48), and let G be the full generator
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of (S , ) t > 0 . Then, for any 6 e D, the equilibrium vg,c of (47) is the unique
solution of any of the following two equations:

For d e dD, vg,c = Sg and for 6 e D the measure vg,c satisfies v g , c ( D ) > 0 .
Furthermore, the map 0\-> vg,c is continuous with respect to the topology
of weak convergence.

Proof of Lemma 2.3. For simplicity we drop the superscripts g, c.
Relation (82) (i) means that E[f(X,)] is independent of t when (X,),^0 is
the solution of (47) with initial condition vg. So (82) (i) just says that vg

is the unique equilibrium of (47), which is by definition true for g e H'. To
prove (82) (ii), note that Gf = lim,_0 t - 1 ( S , f - f ) for all f e D(G), where
the limit is in the norm ||.||. So differentiating (82) (i), we get (82) (ii). To
show that (82) (ii) determines ve uniquely, note that for all f e D(G) it
holds that S,f e D ( G ) V?^0 and (d/dt) S,f = GS,f, where the differentia-
tion is in the Banach space ^(D) (see ref. 11, Proposition 1.1.5 (b)). Now,
with ve a solution of (82) (ii), we have

and this implies (82) (i) for f e D(G). Since D(G) is dense in <g(D), (82) (i)
holds for general f e'g(D) and hence ve = ve.

To see that vg — 8e if O e dD, note that X, = 9 solves (47), so 5e is an
equilibrium of (47). To see that vg(D)>0 for 6 e D, insert f(x) = \x-0\2

into (82) (ii) to get c<v f l | /> =d(vg \ g> (compare also Lemma 2.4). Now
f is strictly bounded away from zero on dD, so <v f l | g> >0. Since g = 0 on
dD this implies v f l(D)>0.

We next show that the probability kernel ve is continuous in 9. For
each 9eD let (Se

t)t>0 be the Feller semigroup above and let Ge be its
generator. Let 9n,9 e D with 9n-*9. Using the fact that the martingale
problem is well-posed for all 9, we have by ref. 20, Theorem 11.1.4,

where the convergence is in ^(D). By ref. 11, Theorem 1.6.1 (c), it follows
that for a11f e D ( G e ) there exist fne@(Ge") such that
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again in the topology on #(D). Now consider the sequence v6n. By com-
pactness, it has a cluster point. For any such cluster point ve, choose a sub-
sequence such that vga converges to ve, and observe that for each f e D(G"),
with f, as in (85),

where the right-hand side tends to zero as n -> oo. By (82) (ii), it follows
that ve = ve for each cluster point ve of the v0n, and hence v6n converges
to ve. |

2.4. Proof of Theorems 1.2-1.4

The proofs of Theorems 1.2-1.4 are based on the following lemma:

Lemma 2.4. For any g e H' and c e (0, oo), let v g , c e ^ ( D ) as in
Theorem 1.1. Fix A e R. Assume that f e<g'(JD)n<^2(D) satisfies

Then

Proof of Lemma 2.4. We start with the case f e <£2(D). Let (T9,'c)t>0

be the Feller semigroup on ^(D) defined by

This is the semigroup related to our process in (47) when the local diffu-
sion function g is set to zero. If Bff c is its full generator, then for every
fe<#\D)
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Let us introduce an operator that is in some sense an inverse to Bg c.
Define

It follows that

as can be seen by writing (compare the proof of ref. 11, Proposition 1.1.5 (a))

Now let f e^2(D), -\Af = L Then

To see this, substitute the variables u = e - c t , d u = — c e - c t dt into (91) to get

Since / is differentiate at 6, the integrand is bounded and it follows that
f—f(S) e D ( B - l

c ) . Interchanging differentiation and integration, we get the
following expressions for the derivatives of B^\(f— /(#)):
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The interchanging is allowed because the integrands on the right-hand sides
are absolutely integrable. In particular, it follows that A B - 1 ( f — f ( 0 ) ) =
-Ji (u/c) A ( f - f ( 8 ) ) du = ft (u/c) 2A du = l/c. '_

Applying (82) (ii) to the function B - l
c ( f - f ( 0 ) ) e ^ 2 ( D ) < = L & ( G \ we

get

which gives (88). To extend formula (88) to fê(Bh:\wip\JOSS-930102\elect\JOSS-930102_ART_010\JOSS-930102_ART_010hD] n^2(D), pick an
x0 e D and a sequence an e (0, 1) with an-> 1 as n-> oo. Define functions
fHeV2(D)by

Then — 14/« = ^ for each n and ||fn —f|| ~* 0. Letting n -> oo and using the
continuity of vg,c, we conclude that (88) holds for f. |

We recall that by the definitions in Section 1.3

so that

The following lemma now follows easily by iterating Lemma 2.4.

Lemma 2.5. Let g e H', clv.., cke(0, oo), and let f be as in
Lemma 2.4. Define Ag ,(k) and F(k) as in (99), and assume that
F ( l ) g, . . . ,F ( k - 1 ) g e H'. Then

with fft = Sf_i 1/Q.
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We are now ready to prove Theorems 1.2-1.4.

Proof of Theorem 1.2. Since vg , c is a continuous probability kernel
it follows from (99) that Fc g e <#(D). If 0 e dD, then vg,c = 6e by Lemma 2.3
and so (Fc g)(6) = 0. If 6 e D then by the same lemma v g , c (D)>0 and so
(Fc g)(6)>0. Finally, inserting f = g* into Lemma 2.4, we get Fc g =
vg,cg = cg* -cvg,cg* ^cg*. |

Proof of Theorem 1.3. By Lemma 2.1, we must show that
K g , ( k } f - ^ H f as k ->• oo in the norm on <#(D) for each f e ^(D), where H
is defined by (75). By Lemma 2.5,

It follows that 0^a kK g , ( k )g^g*, and since ak->aQ we have
\ \Kg , ( k )g\\ ->0. Since g>0 on D this in fact implies that for any f e<^ (D)
with f = 0 on dD

To see why, define Rn := {xeD : 3yedD, \x — y\ < 1/n}. Choose p n e b ( D ) ,
0<pn<1, such that pn = 0 on Rn +1 and pn = 1 on D\Rn. For each n there
exists an Mn<i such that p n < M n g , so ||kg,(k)pn ->0 as k - > i . We
may choose a subsequence nk —> i such that

Using this, we can estimate for /:

where the right-hand side tends to zero as k—> oo. This proves (103).
For any f e (̂D)) we can now write

where we use (101) and (103). |

Proof of Theorem 1.4. Pick g = f = rg* in Lemma 2.4 to get
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which implies Theorem 1.4 (a). To prove Theorem 1.4 (b) we observe that
by Lemma 2.5,

By (103), \\Kg , ( k )g*\\ -+0 as k -> oo, and the theorem follows. To prove
Theorem 1.4 (c), note that by the reasoning following (102),

In the special case that g^lg* for some 1>0, it also follows that
\ \Kg , ( k )g*\\H -»0 as k-> oo. Inserting this into (108), we see that for such
g, the convergence can be strengthened to

3. ERGODICITY: PROOF OF THEOREM 1.5

Theorem 1.5 follows from the following more technical lemma. In this
section, we use the symbol v for the probability measure vg,c (so v denotes
a probability measure, not a probability kernel).

Lemma 3.1. Fix g e H, O e D and c e (0, oo). Assume that g is
locally Holder continuous (with positive exponent) on D and that the mar-
tingale problem associated with the operator A in (48) is well-posed. Then
the SDE (47) has a unique equilibrium v e P ( D ) . Furthermore, for every
f eV(D)

If OeD, then there exist t0,r>0 such that (111) can be sharpened as
follows: For all f: D-+ [0, 1] measurable

The proof of Lemma 3.1 is long and will keep us busy for the rest of this
section. For notational simplicity we treat the case c = 1 only. Other c
follow trivially by the scaling property stf^'1* = k j / c g s .

We start by proving (112). To that end we introduce two compact sets
B c C c D, and prove that the expected time for X,, starting from any
point in D, to reach into B is bounded uniformly in the starting point
(Lemma 3.2). On C we then use results from the theory of non-degenerate
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diffusions to show that the distribution of the process starting from B can
be bounded from below in a uniform way (Lemma 3.3). Combining these
two results we arrive at Lemma 3.4, which shows that there exists a v such
that (112) holds. Once we have shown formula (112), it follows that ( 1 1 1 )
holds for 9 e D. The case 9 e dD can then easily be treated separately. We
end by showing that v is the unique equilibrium of (47).

Without loss of generality we may assume 9 = 0. Choose s > 0 such
that x < 2e => x e D and define:

Lemma 3.2. Let B be as in (113). Denote by ( X x ) l > 0 the process
X starting at X0 = x, and define a stopping time rx by

Then there exists a constant T < oo such that

Proof of Lemma 3.2. Let hd denote the function

This function satisfies

For A ^ 0, we define a function rA on D \B by

We shall show that it is possible to choose A such that stfr^ ^ 1, with .j/ the
differential form in (69). Indeed, a little calculation shows that
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and so we may choose

Next, we can extend rA to a function in ^2(D), which now has the property
(with A the operator in (48))

Abbreviate T = Tx and let r. [e, oo) -> R be the (decreasing) function such
that r ̂ (x) = r(\x\). The process X solves the martingale problem for A, so
for each x eD\B and t^O we have

The case x e B can be added trivially, and letting t } oo we find

which completes the proof. |

We have shown that no matter where the process X starts in D, it
reaches into the set B in a finite expected time that is uniform in the start-
ing point. We next turn our attention to the process starting in B. We shall
prove:

Lemma 3.3. Let (S()l>0 be the Feller semigroup associated with X
and let C be as in (113). For each 0<tj<t2 there exists a non-zero finite
measure u on D such that

Proof of Lemma 3.3. We shall compare X with the process vanish-
ing at 8C. To that end, let
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Note that for any f e < < ? ( D )

The function (t, x) i-» E\_f(X*) 1 {,<T} ] is the solution of a Cauchy problem
on [0, o o ) x C with Dirichlet boundary conditions on dC. Since the
operator A is uniformly elliptic on C and the function g is Holder con-
tinuous on C, it is known (see ref. 4, volume II, appendix §6, Theorem 0.6
and ref. 12, Corollary 3.7.1) that a fundamental solution to this Cauchy
problem exists. In particular, there exists a function pe^((0, o o j x C x C )
with the properties:

Note that p,(x, •) is the probability density of the process vanishing at dD.
Applying (127), we get Lemma 3.3 if we choose for u the measure on C
given by

Combining Lemmas 3.2 and 3.3 we get:

Lemma 3.4. For all 9 e D there exists a t0e(0, oo) and a non-zero
finite measure n on D such that, for all f e #(D), f^0,

Proof of Lemma 3.4. From Lemma 3.2 we get

Let x e D, and denote the distribution of Xx by p. Let Xp, be the process
X with initial distribution p. By Lemma 3.3, there exists a u such that

By (130), (131) and the strong Markov property, we have for all x e D and
f e«(D)
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and (129) follows if we replace u by j// and set t0 = 3T. |

We have now completed the preparatory work and are ready for:

Proof of Lemma 3.1. From Lemma 3.4 we get (112) with a standard
technique. This goes as follows. Fix a measurable f: D -> [0, 1] and define,
for t ^ 0,

By Lemma 3.4,

A similar argument applies to v, , and we get

It follows that

and by induction that
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We thus see that S,f converges uniformly to a constant. This constant
we can formally denote by < v | f > . Formula (112) now holds with
r=- t 0

- 1 log( l -<u | l>) .
To complete the proof of (112), it is left to show that f - > < v | f > ,

defined implicitly above for all measurable f: D -> [0, 1], indeed corre-
sponds to a probability measure. It is sufficient to show that the map is
linear, positive, satisfies < v | l > = l, and is continuous with respect to
increasing sequences of functions. The first three properties are easy. We
therefore only show continuity.

Let B^D) := {f: D-> [0, 1]: f measurable} and let f„f«, e B,(D),
/it/oo- Fix any probability measure p on D. As t-> GO, S,f converges at
a rate that is uniform in f e B ( D ) , so for every e>0 there exists a t>0
such that

There exists an n such that

and it follows that for every i ̂  n

Note that v^t/u, so v(D)>0. This completes the proof of (112).
Trivially, (112) implies (111) for O e D. We next turn to the proof of

(111) for 9 e dD. As we shall see, in this case v turns out to be Ss. Let X,
be any solution to the martingale problem associated with A. For x e D
write x = (xl,..., xd) and write X, h= (X},..., Xd

t). Without loss of generality
we may assume t = 0 and x1 > 0 Vx e D. From the martingale problem (67)
we have for i= 1,..., d

We see immediately that
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By (46), and by (79) in Lemma 2.2 (b), there exists a constant L<i such
that

Let

Then (142) and (143) imply

Next, the function t - > E [ \ X t \
2 ] is differentiable and satisfies

From this it follows that

and therefore

Here, by (145),

Hence, combining (148) and (149) we get
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which tends to zero as t-> i. Since also E [ X i
t ] -> 0 as t -> i, Chebyshev's

inequality shows that ( S t f ) ( x ) = E [ f ( X x
t ) ] converges to < p 0 / f > = f ( 0 )

for each f e b ( D ) , and (150) shows that this convergence is uniform in the
initial value x. This completes the proof of (111).

We complete the proof of the theorem by showing that v is the unique
equilibrium of (47). This means that we must show (compare (82) ( i )) that
v is the unique solution of

First, for any x e D,

which proves that (151) holds. Suppose that v is another solution. Let
t->i in (151) and use that Stf-> <v | f > . By dominated convergence,
< v | S , f > - > < v | f > . So < v | f > = < v | f > for all feV(D), and hence
v = v. D

Remark. Formula (112) actually shows that v(D) = 1 for teD,
whenever it is true that for x e D

Formula (153) holds, for example, under the conditions of Theorem 1.9,
but no doubt much more generally too.

4. THE MARTINGALE PROBLEM

In this section we prove the theorems about the martingale problem
for A mentioned in Section 1.4. The proofs of Theorems 1.7 and 1.8 have
already been indicated in the text.

4.1. Existence: Proof of Theorem 1.6

We extend the function g to Rd by putting g = 0 on Rd\D. Let
u £ P ( D ) . By ref. 11, Theorem 5.3.10, there exists an Rd-valued weak solu-
tion to the SDE

with initial distribution P [ X 0 e d x ] = u ( d x ) . By the same theorem, I'solves
the martingale problem for the operator {(f, Af): f e b i

c ( R d ) } . By ref. 11,
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Proposition 7.1 from the appendix, there exist f n e b i
c ( U d ) such that fn->f

and Afn -> Af uniformly on Rd. By ref. 11, Lemma 4.5.1, T now also
solves the martingale problem for {(f , A f ) : f e b 2

c ( R d ) } .
Pick x i eD, R i e ( 0 , i) such that D = Ui { x e R d : |x-xi| <Ri}. Let

heb2(R), h = l on ( - i , 0 ] , h = 0 on [1, i) and h<0. Define
f ieb 2

c (R d ) by fi(x) : = h(|x-x i |-R i). Then f i eb c
2 (R d ) and it is easy to

see that Afi> 0. By the martingale problem,

which shows that P[|X t-x i , \<R i] = 1 Wt>0 Vi. By the continuity of X, it
follows that P [ \ X t - x i | <R iW t>0, i] = 1 and therefore

By Whitney's extension theorem (ref. 11, Corollary 6.3 in the appendix) it
now follows that b 2 ( D ) = { f \ D : f e2

c(Rd)}, and therefore X solves the
martingale problem for A = { ( f , A f ) : f e b 2 ( D ) } . D

4.2. Strong uniqueness: Proof of Theorem 1.9

For notational simplicity we only consider the case c = 1 and t = 0.
Our first aim is to prove (61), i.e., we show that the time needed for X, to
reach the boundary dD is infinite (Lemma 4.5). For this we construct (in
Lemmas 4.3 and 4.4) a function h on D such that Ah < 1, where A is the
differential form in (69), i.e.,

With the help of a radial function (Lemma 4.2) the problem is reduced to
a one-dimensional problem (Lemma 4.1).

Lemma 4.1. Let a , b e b [ 0 , 1] and a>0 on (0,1]. Then there
exists a unique function feb2(0, 1] such that

For all re (0, 1) this function satisfies
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Furthermore, if

then

Proof of Lemma 4.1. Let u e b 2 ( 0 , 1] be the unique solution of

i.e.,

Note that u ( r ) > 0 and u'(r) <0 for all re(0, 1]. From the latter property
it follows that u is invertible. Let w(0) : = l im r - > 0w(r) (which is allowed to
be i). There exists a continuous function v: [0, w(0)) -> (0, i) such that

Let A e b [ 0 , w(0)) be the unique solution of

i.e.,
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Note that h ( u ) > 0 and h'(u)>0 for all ue(0, u(0)). We now define
feb 2 (0 , l ] by

It follows that

We see that / constructed above is the unique solution of (158), and that
f satisfies (159).

It is left to show that, under the conditions mentioned, / diverges as
r->0. Let L be such that lim supr->0 r - l a ( r ) <L <b(0). It follows that
there exists an £ > 0 such that b(r) > L and a(r) < Lr for all r e [0, e]. Let
f e £ ( 0 , e] be the unique solution of

i.e.,

It is clear that f(r) -> i as r-> 0. Furthermore,
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On (0, e] define h : = f—f. Then, using (159), we get

It follows that h(r)>0 for all re(0, e]: if we assume the converse, then h
must assume a positive maximum in a point 0 < r < e, which is impossible
by (172). We thus see that f > f, and therefore f(r) -> i if r -> 0. D

Lemma 4.2. Let D be regular and 0 e D. Then there exist a func-
tion r e b 2 ( D ) and a constant K e ( 0 , i) with the following properties:

Proof of Lemma 4.2. Recall the definition of a regular set in Sec-
tion 1.4 and the function m associated with it. The function x—> x . n ( x ) =
x • Vm(x) is b2 and strictly positive on dD, so we can find a strictly positive
function p e b 2 ( D ) such that in an open neighbourhood of 3D:

Define

Then r e b 2 ( D ) and, for all xedD, Vr(x) is parallel to n(x) and satisfies
— x . V r ( x ) = p ( x ) x . v m ( x ) =1. We can multiply r with a constant to get
r < l . D

Lemma 4.3. Let D' C D be regular. For xedD', let n(x) be the
normal to D' in x. For x e D, let

Assume that, for all xn e D, xe dD' n dD with xn -> x as n -> i,
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Then there exists a function h e b ( D ' ) such that

Proof of Lemma 4.3. Extend g by putting g = 0 on D'\D, so that
(177) holds for all xn e D' with xn -> x e dD'. Let r be as in Lemma 4.2. The
idea will be to find a function feb2(0, 1] such that

satisfies (178).
For any f e b 2 ( 0 , 1] we have

where the first two formulas follow from

We want estimates on the two terms in the formula for A f ( r ( x ) ) . To that
aim, we define functions a, b e b[0, 1 ] by
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We have

Indeed, the first equation is trivial. For the second one, note that

where, by (177), for each xneD' with xn-> xedD'

Here, the last two equalities follow from Lemma 4.2. Using compactness,
we arrive at (183).

We have thus found functions a, beb[0, 1 ] such that

We can change a such that a>0 on (0, 1] while (186) continues to holds.
Applying Lemma 4.1 to these functions a and b, we find a function /
satisfying (158), (159) and (161). Since b(0) >0, we see that there exists an
£ > 0 such that

Combining this with (159), (180) and (186), we see that

where h(x) := f(r(x}) as in (179). But x - > ( A h ) ( x ) is continuous on the
compact set {xeD : r ( x ) > e } , so multiplying h by a constant we arrive at
a function satisfying (178). D
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Lemma 4.4. Let D be a finite intersection of regular sets. Assume
that for all xedD, all xneD with xn -> x, and each normal n(x) to D in x:

Then there exists a function h e b 2 ( D ) such that

and such that h(xn) ->i for all xn -> x e dD.

Proof of Lemma 4.4. Let D = Un
i=1D i, where the Di are regular.

For each Di the assumptions in Lemma 4.3 are satisfied. In particular,
(189) implies (177). Let h i e b 2 ( D i ) be the function constructed in
Lemma 4.3. Then h = (1/n) En

i=1 hi satisfies our requirements. D

Lemma 4.5. Let D and g be as in Lemma 4.4, and let (X x
t) t > 0 be

a solution to the martingale problem for A with Xx
0 = xeD. Then

Proof of Lemma 4.5. Let h be the function mentioned in Lemma 4.3.
For H < i we introduce a stopping time TH by

We can extend h outside {x e D : h(x) <H] to a function in b2(D). From
the martingale problem we get

Therefore
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Letting H| i so that {xeD : h(x}<H] | D, we find that

Letting t|i we obtain Lemma 4.5. D

Proof of Theorem 1.9. Define Dn := {xeD : g(x) > 1 / n } . Note that
if g is Lipschitz on Dn with constant Ln, then Rg is Lipschitz on Dn with
constant nLn. Let ( X t ) t > 0 and (Xt)t>0 be solutions of (47) with X0 = X0,
adapted to the same Brownian motion. Define stopping times

and define ?„ similarly for ( X t ) t > 0 . Now follow the proof of Theorem 5.2.5
in ref. 14, to see that the processes X and X are indistinguishable up to time
Tn A Tn, where by Lemma 4.5, tn A Tn | i as n \ i. D

4.3. Weak uniqueness: Proof of Theorem 1.10

Writing

we see that g*(x) = ( 1 / d ) ( 1 — \x\2) as claimed. We introduce polynomials
on D in the usual way, namely we define the set of all multi-indices a by

and on D we define functions x —> xa and a space of polynomials of order
<n by
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Setting g = rg*, r>0, we observe that

Since ( d / d x i ) x a e P | a | - 1 and (d 2 / dx 2
i ) x a e P | a | - 2 , we have

The spaces Pn are finite-dimensional and closed under A, and their union
U n P n is dense in £(D). Applying ref. 11, Proposition 1.3.5, we see that
A is closable and that its closure generates a Feller semigroup on b ( D ) .
This implies that the martingale problem is well-posed for A (ref. 11,
Theorem 4.4.1), and hence ( r g * ) r > 0 C H . But Fcrg* = (cr)/(c + r) g*, so
the family (rg*)r>0 is closed under Fc for all ce(0, i). This implies that
rg*eH" for all r>0. D
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